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Abstract

Uncertainty is inherently present in many real-world domains like images. Analyses of such uncertain data
using traditional certain-data-oriented techniques do not achieve best possible accuracy. UACI introduces
the concept of representing images in the form of probabilistic or uncertain model using interest points
in images. This model is an uncertain-data-based adaptation of Bag of Words, with each image not
only represented by the visual words that it contains, but also their respective probabilities of occurrence
in the image. UACI uses an Associative Classification approach to leverage latent frequent patterns in
images for the identification of object classes. Unlike most image classifiers, which rely on positive and
negative class sets (generally very vague) for training, UACI uses only positive class images for training.
We empirically compare UACI with three other state-of-the-art image classifiers, and show that UACI
performs much better than the other classifying approaches.
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1 Introduction

Advancements of recent technology has provided
an opportunity to store and record large quantities
of different types of data continuously. In many
applications, data are inherently noisy, such as the
huge data collected by sensors or by satellites. In
some other cases for preserving the privacy [1] like
in case of medical databases, customer transaction
analysis, and demographic datasets, noise is added
deliberately. Similarly, data being collected during
the surveys which involves questionnaires and in-
terviews, may be uncertain in nature. Since in such
kind of applications information captured in the
transactions have items associated with an exis-
tential probability, traditional mining techniques
which were used for certain databases are not ap-
plicable. This has created a need for mining uncer-
tain data [2]. An uncertain item is an item x ∈ I
present in a transaction t ∈ T which is associated
with an existential probability P (x ∈ t) ∈ (0, 1).
An uncertain transaction t is a transaction that
contains uncertain items. A transaction dataset
T containing uncertain transactions is called an
uncertain dataset.

It is difficult for humans to discover underlying
knowledge and patterns from huge image datasets.
So, extracting knowledge from images is increa-
singly in demand. The focus is to extract the
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most relevant image features into a form suitable
for mining. The mined patterns from such local
image features are used for object identification
and detection. Association Rule Mining (ARM)
enables the extraction of such latent patterns in
the form of association rules. These rules are ba-
sed on their respective frequencies, and thus re-
present the dominant trends and statistically si-
gnificant associations in the given dataset. A new
classification approach called associative classifi-
cation [3],[4],[5] leverages these patterns to build
classifiers. Thus, associative classifiers are highly
accurate and very robust because low-frequency
patterns (noise) are eliminated during the ARM
stage. Associative Classification when applied on
uncertain probabilistic representation of data like
images, provides even better accuracy and perfor-
mance as compared to the corresponding traditio-
nal certain representation.

In this paper, we present our algorithm UACI which
adapts uncertain associative classification to fit the
image classification perspective. In UACI, we ex-
tract Scale Invariant Feature Transform (SIFT) [6]
points from each image. SIFT points are local
image features which are image scale and rotation
invariant. They are based on the appearance of the
object at particular interest points. Each image
has different number of SIFT features. Then, clus-
tering is done by combining all the SIFT features
of all images present in the given dataset. The



Figure 1: Example of Visual Words obtained through

SIFT points in an image

images are expressed in terms of a modified Bag of
Words (BOW) model. This modified BOW model
consists not only of various words/clusters in the
given vocabulary, but also the probabilities asso-
ciated with these words/clusters in each image.
Each image is represented as a transaction/record
of words/clusters with associated probabilities to
provide an uncertain data representation of the
image. Thus, our model not only encapsulates
the words/clusters associated with each image, but
also their respective probabilities of occurrence in
the given image. Fig. 1 illustrates various visual
words (eyes, nose, and lips), obtained by using
SIFT points, present in a human face. These visual
words are combined with their respective proba-
bilities to get a representation of each image as
illustrated in Fig. 2. Patterns obtained from the
occurrence (along with probability) of visual words
in each image, help in the identification of image
object classes.

Another salient property of UACI is that it is a
one-class classifier, i.e. it requires only positive
class images for training. In the image domain,
especially for object class identification problems,
the negative class is not well-defined and could
include all images in the universal set that are
not present in the positive class. While using a
traditional two-class classifier, this could lead to
the training of a lopsided classifier, which could
be over-fitting too. But, UACI relies on only the
positive class training set, and thus is very robust
by avoiding the aforementioned problems.

Thus, UACI mainly aims at identifying the pre-
sence or absence of object classes in images using
uncertain association rules and uncertain associa-
tive classification. Our main contributions through
this paper are:

• Creation of a new concept of representing
images in the form of uncertain transactions/records

using visual words/clusters and their respec-
tive probabilities in each image.

• Use Uncertain ARM to extract patterns, in
the form of uncertain association rules, from
images.

• Come-up with a one-class Uncertain Asso-
ciative Classifier which would identify the
presence of object classes in images. For trai-
ning only uncertain association rules obtai-
ned from positive class training images are
used, with no reliance on negative class trai-
ning images.

This paper is organised as follows: In Section 2, we
introduce the related work of associative classifica-
tion of Images. In Section 3, we discuss our algo-
rithm. Detailed experimental results are presented
in Section 4. In Section 5, we draw conclusions and
present future work.

2 Related Work

In this paper, we consider the whole dataset to be
uncertain instead of partial missing values in data.
Uncertainty has been shown in terms of probabi-
listic distributions. There are few methods [7], [8]
which try to solve specific classification tasks ins-
tead of developing a general algorithm for classi-
fying uncertain data. But none of these algorithms
have addressed the issue of developing classifica-
tion algorithms for uncertain datasets.

Identifying frequent itemsets and association rule
mining [9], [10], [11] from uncertain databases have
also been becoming an active area of research. The
support of itemsets and confidence of association
rules are integrated with the existential probability
of transactions and items. U-Apriori is proposed
in [12] which essentially mimics the Apriori algo-
rithm, except that it performs counting by compu-
ting the expected support of the different itemsets.
The expected support of a set of items in a tran-
saction is obtained by simply multiplying the pro-
babilities of different items in the transaction. But
much work has not been done by combining the as-
sociation rule mining and classification techniques
to mine the uncertain datasets. CBA [13] was one
of the first associative classifiers and focuses on
mining a special subset of association rules, called
class association rules (CARs). Thabtah in [3]
provides a very detailed survey of current asso-
ciative classification algorithms. The author has
compared most of the well-known algorithms, like
CBA [13], CMAR [14], CPAR [5] among others,
highlighting their pros and cons, and describing
briefly how exactly they work. He lays more em-
phasis on pruning techniques, rule ranking, and



predication methods used in various classifiers, and
also provides valuable insights into the future di-
rections which should be undertaken in associative
classification. In this paper, we deal with an asso-
ciative classifier for uncertain datasets.

To mine valuable information from a large image
content, classifying image by content (low-level vi-
sual features) is an important way and is challen-
ging [15]. Different types of classifiers [16], [17]
have been built in order to perform this task. Ap-
plication of Association Rule Mining with the help
of spatial configurations and local neighborhoods
has been described in [18] and [19] in detecting
features in images and videos respectively. There
is also an approach [20] based on the bag-of-words
model for generic visual categorization. [21] adapts
fuzzy associative classification for object class de-
tection in images using the interest points.

3 Our Algorithm and Image Clas-
sification

In this section, we explain how our algorithm is
used for classification of object classes in images
which are represented by a probabilistic model.
Given a image dataset, SIFT vectors are extracted
from each image and are clustered using K-Means
clustering algorithm creating a modified Bag of
words model. This is followed by the identification
of association rules which are transformed in to un-
certain classification rules during training. While
actual classification, the SIFT vectors extracted
from the test images are interpolated with the cen-
ters of the clusters generated during the training
phase. Information gain is calculated for each clas-
sification rule and classification process is perfor-
med by considering a threshold δ.

3.1 Probabilistic Data Generation

Given the positive class training dataset(Itr), the
first step in our algorithm is to extract different
SIFT vectors(SIFTi) from each image, Itr

i . K-
means clustering algorithm is used to cluster all the
generated SIFT vectors(SIFTTotal) for the images
in the training dataset. It generates a clustering C
which has K number of different clusters - C1, C2, . . . , Ck.
After clustering, each image Itr

i is represented in
the modified form of Bag-Of-Words model, where
each word represents the cluster associated with a
probability value. Each image Itr

i in this model
is represented as a record r. As described in the
Algorithm 1, initially each cluster id j present in
each record r is associated with a total count of the
number of SIFT features grouped in to that cluster
Cj .

We normalize the values associated with each clus-

Image1 :< Cluster1, P rob1 >, <
Cluster2, P rob2 >, . . . , < Clusteri, P robi >
, . . . < Clusterk, P robk >
...
Imagen :< Cluster1, P rob1 >, <
Cluster2, P rob2 >, . . . , < Clusteri, P robi >
, . . . < Clusterk, P robk >

Figure 2: Modified Bag of Words model representation

for Uncertain Data

ter Cj so as to maintain consistency throughout
all the records. This leads to the transformation of
the model in to a probabilistic or uncertain dataset
which takes care of the problem experienced by
the general Bag of Words model in which each
word belongs to each image/record with the same
probability of 1.

Algorithm 1 Probabilistic Dataset Generation
1: Given the training dataset of images Itr =
{Itr

1 , Itr
2 , . . . , Itr

n }
2: for each image Itr

i ∈ I do
3: calculate SIFT i for Itr

i

4: end for
5: SIFTTotal =

⋃n
i=1 SIFT i

6: Cluster SIFTTotal into K−clusters, where the
clustering C = C1, C2, . . . , Ck

7: for each image Itr
i ∈ I do

8: for each feature f ∈ SIFT i do
9: Identify the cluster Cj to which the feature

f belongs.
10: if f ∈ Cj then
11: Frequency(Cj) is incremented by 1
12: end if
13: end for
14: end for
15: for each image Itr

i ∈ I do
16: for each cluster Cj in C do
17: normalize the frequency value

associated with Cj in Itr
i using the∑n

i=1 Frequency(Cj)i

18: end for
19: end for

The probability value assigned with each cluster id
is the normalized value of the frequency of SIFT
vectors of an image clustered in to that particu-
lar cluster. Each image in the probabilistic data
generated will be in the format as shown in Fig.2.
Choosing the number of clusters while clustering is
also an important step. Because, lesser the number
of clusters, more is the loss of information about
the images which is also the same in case of higher
number of clusters. Hence, choosing the optimal
number of clusters is important. In our algorithm
while testing we have used the number of clusters
based on the dataset considered.



3.2 Uncertain Associative Classifier Trai-
ning

Most of the algorithms train their respective classi-
fier with positive class and negative class datasets.
But in UACI classifier, only a positive-class da-
taset is used for training the classifier. The first
step in training is to generate association rules for
the uncertain model. For generating the uncertain
association rules, we have used an uncertain ARM
algorithm which relies on the partitioning approach
and TIDlists. The main reason for building an
uncertain associative classifier instead of a certain
associative classifier is to handle the probability as-
sociated with the cluster ids in the modified BOW
model. After the generation of association rules,
entropy and information gain are calculated for
each rule generated. Given a rule X → Y , X is an
itemset composed of varying number of attributes
and Y is the class label of the rule which is obtained
from the dataset.

The probability of Y is considered to be the maxi-
mum probability of all the attributes in each rule.
The information gain IG(Y |X) (as shown in eq.(3))
of a given attribute X with respect to the class
attribute Y is the reduction in uncertainty about
the value of Y when we know the value of X. The
pseudocode for training the classifier is shown in
the Algorithm 2.

H(Y ) = −
z∑

i=0

pi log pi (1)

H(Y |X) = −
n∑

j=1

P (X = xj)H(Y |X = xj) (2)

IG(Y |X) = H(Y )−H(Y |X) (3)

ARM generates a large set of rules(R), many of
which are redundant. Pruning methods are used
in order to improve the efficiency. For the pruning
process, information gain(IG) of each rule ri and
rule length rli i.e., number of attributes in each
rule. Each rule rq is compared to all rq+1 to rm′

rules. A given rule rq (with information gain IGq

and rule length rlq) is pruned (R = R − rq) if
there exists another rule rs (with information gain
IGs and rule length rls) which is a superset of
rq, and rlq < rls and IGq < IGs. The size of R

reduces from m
′
to m

′′
after applying the pruning

technique.

3.3 Image Classification

Image classification is done by using a set of un-
certain classification rules derived during training.
Given set of testing images Ite for classification,
a set of SIFT vectors SIFTi are extracted from

Algorithm 2 Training the associative classifier
1: Apply ARM for the modified BOW model of

Itr

2: ARM generates rule set R which has m
′
num-

ber of rules
3: rule length of any rule rq ∈ R is rlq
4: Information Gain of rq ∈ R is IGq

5: for each rule rq ∈ R do
6: for rule rs ∈ [rq+1 till rm′ ] do
7: compare rq with rs

8: if rlq < rls and IGq < IGs then
9: prune the rule rq

10: end if
11: end for
12: end for
13: Pruning the redundant rules reduces the num-

ber of rules in R by (m
′ −m

′′
)

14: for each rule r(X → Y ) ∈ R do
15: calculate the entropy of X using eq.(1)
16: calculate the average conditional entropy

H(Y |X) for Y with respect to X using eq.(2)
17: calculate the Information Gain IG(Y |X)

using eq.(3)
18: end for

each image Ite
i . Let us say that there are f SIFT

vectors for each image, where the value of f is
based on the image considered. Each SIFT vec-
tor of an image should be mapped with the clus-
ter centers med1,med2, . . . , medk of the K-clusters
obtained during the training phase. The cluster
center(medj) which is nearer to a SIFT vector(v)
should be identified using eq.(4). The same pro-
cedure is applicable for all the remaining SIFT
vectors SIFTi of a given image Ite

i . As shown
in the Algorithm 3 the frequency with which the
SIFT vectors belong to clusters are calculated and
the image is interpolated in the same format which
was done similarly in the training phase of positive
class. Each image in the given set should be mo-
dified in to the format shown in Fig.2

CosineDistance =
medj · v
‖medj‖‖v‖ (4)

Each image Ite
i from the positive class or negative

class test datasets is classified similarly as follows.
As explained in the Algorithm 4, each rule rs in
the generated rule set R(with m

′′
rules) is applied

to the image record r. We identify each of the t at-
tributes that are in common with the antecedent of
each rule and the given image record. Considering
each of the probabilities {prob1, prob2, . . . , probt}
associated with the t attributes from r, we cal-
culate the average probability avgProbrs

i by using
eq.(5). We multiply this value with the information
gain IG(rs) associated with the rule rs as shown
in eq.(6) and consider this obtained result as the
uncertain information gain UIG(rs). For an image



Algorithm 3 Interpolation of testing dataset
1: Centers of the clusters obtained during

the training process are meds =
{med1,med2, . . . ,medk}

2: Given the image dataset for testing Ite

contains Ite
1 , Ite

2 , . . . , Ite
l

3: for each image Ite
i ∈ Ite do

4: calculate SIFT i for Ite
i

5: for each SIFT vector v ∈ SIFT i do
6: for each center medj ∈ meds do
7: calculate Cosine Distance of SIFT vec-

tor v from medj

8: if f ∈ Cj then
9: Frequency(Cj) is incremented by 1

10: end if
11: end for
12: end for
13: end for
14: for each image Ite

i ∈ I do
15: for each cluster Cj in C do
16: normalize the frequency value

associated with Cj in Ite
i using the∑n

i=1 Frequency(Cj)i

17: end for
18: end for

Ite
i, we calculate the uncertain information gain

obtained while applying each rule in the rule set
R and add the values as shown in eq.(7). This
is the Total Uncertain Information Gain(TUIG)
which is verified with a threshold δ. If the value of
TUIG is greater than or equal to δ, then the image
belongs to the positive class or else it belongs to
the negative class. Hence, given a set of images
classification is done.

avgProbrs
i =

∑t
j=1 probj

t
(5)

UIG =
∏

(IG)(avgProbrs
i ) (6)

TUIG =
m
′′∑

s=1

UIGs (7)

4 Experimental Results

In this section, we present the experimental results
of the proposed uncertain association-based UACI
algorithm. We have studied the performance of
UACI as compared to I-FAC, BOW and SVM on
the basis of false-positive-rate (FPR) versus recall
curve. For our algorithm, we have considered a
minimum support ≈ 0.01 for all the datasets stu-
died. The support for each datasets is different
and relies on how dense or sparse the dataset is,
the number of items (singletons) involved in the
dataset, and the average length of transactions in

Algorithm 4 Classification of the testing dataset
1: for Each image Ite

i ∈ Ite do
2: consider a record ri of the image dataset
3: for each rule rs ∈ R do
4: Identify the t common attributes
5: Calculate avgProbrs

j , using the probabili-
ties associated with each of the t attributes

6: calculate UIG
7: end for
8: calculate TUIG
9: if TUIG ≥ δ then

10: Classify the image that it belongs to posi-
tive class

11: else
12: Classify the image that it belongs to ne-

gative class
13: end if
14: end for

the dataset [22]. We have used 500 clusters for
each dataset for the clustering process.

In BOW, we count how many times each visual
word in the code-book occurs in an image. The
results for BOW have been taken from the baseline
of [18], which uses 3000 clusters to create the code-
book. And, the results for SVM (RBF Kernel) and
I-FAC have been taken from [21]. CALTECH Cars
(Rear) background dataset was used as negative
training set for BOW and SVM. UACI and I-FAC
do not expect any negative class training set.

The datasets considered are:

1. GRAZ Bikes: Positive class training and
positive class test sets respectively are ran-
domly picked 25 and 38 images from the GRAZ
bikes dataset. The first 200 images from CALTECH-
101 background class dataset were used as
negative class test set.

2. ETHZ Giraffes: Training was done on 93
images of giraffes downloaded from Google
Images. The positive class test and nega-
tive class test datasets were 87 giraffe images
and the rest 168 images respectively from the
ETHZ Shape Classes dataset.

3. CALTECH Faces: 52 randomly picked images
from the CALTECH Human Faces (Front)
dataset were used for each of the positive
class training and test sets. The first 200
images from CALTECH-101 background class
dataset were used as negative class test set.

The performance of UACI, when compared with
the other algorithms, on the basis of the three
datasets used is shown in figures 3, 4, 5. The FPR-
versus-recall curve is calculated by varying the va-
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Figure 3: Graz Bikes dataset results

lue of δ. The value of δ for each dataset can be de-
termined by cross-validation on the respective po-
sitive class and negative class test datasets. UACI
consistently out-performs BOW and SVM on all
datasets. Moreover, the performance of UACI is
better than that of I-FAC for the GRAZ Bikes and
Faces datasets, and comparable for the Giraffes
dataset. Another highly desirable characteristic
of UACI, which is very important for object class
identification for images, is that it performs very
well at lower ranges of FPRs (0.1–0.3), especially
for the GRAZ Bikes and Faces datasets. The good
performance of UACI is because of the following
three features of UACI:

• First, is the representation of images in pro-
babilistic or uncertain model instead of the
traditional BOW model. This model cap-
tures the uncertainty which is inherently present
in each feature of an image.

• Second, is the extraction of latent frequent
patterns in the form of uncertain association
rules. These patterns eliminate much of the
noise and represent dominant trends and sta-
tistically significant associations in the given
dataset, because of which the resultant as-
sociative classifier has a very high degree of
accuracy.

• Third, the one-class classifier paradigm helps
in building a classifier which is not affected
by the negative class (generally very vague
in case of images). This helps in creating a
generic classifier which does not over-fit the
negative class training set and can work very
well with all kinds of test images.

5 Conclusions and Future Work

Data uncertainty is very common in many real-
world applications. One such application is images
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Figure 4: Giraffe dataset results
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Figure 5: Faces dataset results

that we have considered here. In this paper we
have developed a new associative classifier which
can be used for classification of images represented
in the form of uncertain data records. This algo-
rithm directly classifies positive class and negative
class test images without any need of training the
classifier on negative class dataset. By identifying
the inefficiency of the traditional bag of words mo-
del, we have developed a modified bag of words
model which helped in classifying positive class and
negative class test images to a greater extent as
shown in the results. Performance of this algorithm
is better when compared to the other state-of-the-
art classification algorithms for object class iden-
tification in images. The avenues of future work
include performing further evaluation on different
models with varying number of clusters and inte-
grating meta-data (tags) with feature-based data
for better mining of patterns.
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